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SELF-SIMILAR PROBLEM OF DECOMPOSITION OF GAS HYDRATES 

IN A POROUS MEDIUM UPON DEPRESSION AND HEATING 

R. I. Nigmatulin, V. Sh. Shagapov, and V. R. Syrtlanov UDC 532.546:536.421 

We consider the specifics of decomposition of gas hydrates under thermal and depressive action 
on a porous medium completely filled with a solid hydrate in the initial condition. The existence 
of volumetric-expansion zones, in which the hydrate coexists in equilibrium with water and gas, 
is shown to be possible in high-permeable porous media. The self-similar problems of hydrate 
decomposition upon depression and heating are studied. Ii is shown that there are solutions 
according to which hydrate decomposition can occur both on the surface of  phase transitions 
and in the volumetric region. We note that, in the first case, decomposition is possible without 
heat supply to a medium and even with heat removal. 

At present, great theoretical and practical interest in studying gas hydrates in porous media has arisen 
due to the fact that many technological processes occurring in the gas, petroleum, and chemical industry are 
accompanied by the formation of gas hydrates; deposits of the hydrates of natural gases can occur in porous 
strata. Many theoretical and experimental investigations of gas hydrates are directed to the development of 
effective methods of preventing their formation in the extraction, transportation, and treatment of gases. 

Some aspects of gas-hydrate decomposition in a porous medium completely filled with a hydrate in 
the initial state were studied in [1-4]. In addition, as shown in [5, 6], decomposition of hydrates that do not 
completely occupy a porous medium in the initial state is possible in the volumetric zone if a solid hydrate 
coexists with the decomposition products (gas and water). 

In this paper, within the framework of self-similar solutions, we consider the specifics of gas-hydrate 
decomposition under thermal and depressive action on a porous medium completely filled with a solid hydrate 
in the initial state. 

1. We consider filtration processes in a porous medium completely filled with a solid hydrate in the 
initial state. In describing decomposition processes, the following assumptions are usually adopted: the skeleton 
of a porous medium, a hydrate, and water are incompressible and immobile, the porosity m is constant, and 
the gas is calorically perfect: 

o o o o p /RgT,  vs=vh=vl=O. Ps, PA, Pl, m = const, pg = 

Here p0 and vi (i = s, h, l, 9) are the densities and velocities of the phases, p and T are the pressure 
and the temperature, m is the porosity, and P~ is a gas constant; the subscripts s, h, l, and g refer to the 
porous-medium, hydrate, fluid, and gas parameters, respectively. 

For the volumetric contents of the phases c~i (Fig. 1), we have 

= 1 - m ,  = m v ,  = - v)s , = m ( 1  - 

as +ah +al+ag = 1, Sg +SI = i, 
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Fig. 2 

where v is the saturation with water, i.e., the section of the porous volume occupied by a solid hydrate. 
The remaining section 1 - u of the porous volume is occupied by a gas and water the amount of which is 
determined by the saturation with gas S~ and water SI. 

In a planar-dimensional approximation, the equations of conservation of masses, the Darcy law for 
decomposition products, and the heat-influx equation have the most general form in the volumetric-expansion 
z o n e "  

--'0 [m(lo'Yt --v)P~ ff-~. [m(1- p)pe~ = J,, --~ (m(1-v)p~S,] = .It, 

a (1.1) [,,-,p~] = - J ,  J~ + ;~ = ; ,  J~ = g J, Ja = (1 - g )J  

[J~ (i = l, g) is the intensity of formation of the ith phase]; 

m(1 - v)5',u, -- _/c~ ap (1.2) pg 8z 

[kg and pg are the permeability and dynamic viscosity for the gas phase (k: = 0)]; 

o')T o~T __ re(l_ v)5, (a p ap) / ) ( a T )  0v (1.3) PC-'~ "t 'm(1- v)P~ "~-I-n'-~z "l" ~z ~ ~z + lJ D'-'t 

(pc ---- (1 - m)p~ + m[(1 - v)(p~ + p~Stci) + up~ cb]). 

Here c~ are the specific heat capacities, c~ is the heat capacity of the gas at constant pressure, I is the specific 
heat of hydrate decomposition, and g is the mass fraction of the gas in the hydrate. 

A gas hydrate with a porous skeleton forms an absolutely solid body, and the pressure distribution in it 
can be arbitrary with one thermodynamic condition of hydrate stability [p/> pj(T)]. By an arbitrary pressure 
in a hydrate with a porous skeleton, we mean any distribution of stresses (with the first invariant governing the 
pressure) which satisfy the equations of statics, the boundary conditions, and the thermodynamic conditions 
of existence of a gas hydrate. In the three-phase zone, where c~h, at, and a~ > 0, the condition of equilibrium 
phase transitions [T - Ts(p)] is assumed. Thus, the dependence of the phase-equilibrium temperature on the 
pressure is taken in the form 

T,(p) = T,o + T, In(piP,o), (1.4) 

where T,0 is the phase-transition temperature which corresponds to the pressure pso and T, is an empirical 
parameter (usually, T, << Tso). According to the Clapeyron-Clausius equation, we have 

, 
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Here the gas density on the line of gas-hydrate saturation is p~ = pO(p, Ts(p)) = p/RgTs(p). With allowance 
for (1.4), we obtain 

T, 

For the problems considered, the variability of I turns out to be insignificant. For example, within the pressure 
range p = 5-15 MPa, for the methane hydrate we have l = (5.10 n :k 2.10 2) J/kg. 

The coefficient of gas permeability depends on the volumetric concentration of the gas (or the "effective" 
porosity). We specify this dependence on the basis of the Kozeny formula (the solid curve in Fig. 2) 

mr3 
k# = k0 (I - m') 2 ~- kaoS~(1 - u)3 (m' = a,, k,o = k0m3), (1.5) 

where m t is the "effective" porosity for the gas. Specifying the permeability coefficient in this form assumes 
that the characteristic sizes of "effective" pores are the same as those for the solid skeleton. Basically, this 
dependence in the zone of formation of the "effective" porosity, where it is small and can be shown as bubbles or 
others uncombined or weakly combined microvolumes, should be refined by introducing the ultimate "effective" 

t below which (0 ~ m' <~ m~,) the permeability is equal to zero (the dashed curve in Fig. 2). porosity m, 
Taking into account that, in the initial state, the porous medium is completely filled with a hydrate, 

for Sg .and St, according to [4] we have 

st = (1 - g)p0 p0 _ (I - g)p  (1.6) po , s, = 

In the decomposition of hydrates, three zones can be formed, each containing only the solid hydrate, 
or the hydrate and the decomposition products, or the decomposition products. At the boundaries of these 
zones, the relations that follow from the law of conservation of mass and the heat balance should be fulfilled: 

[m((1 - u)p~ - "~Cs)) - vgP~ = O; (1.7) 

Here [~b] is the jump of the parameter ~b at the boundary z(s ) between the zones. The temperature and the 
pressure at these boundaries are assumed to be continuous. 

2. Three cases can be distinguished at the boundary under the simultaneous thermal and depressive 
action of a porous medium through the boundary (x = 0), depending on the values of temperature Te and 
pressure pc. In the first case, the temperature and the pressure at the boundary are higher than To and ps0 
(Te > To and pe > pso), where pso is the equilibrium pressure at temperature To. Here, for the self-similar 
problem of an abrupt change of the temperature and pressure, one can construct only the solution with the 
surface of the phase transition. For two other caaes (Te > To, pc < pso and T~ < To, pe < ps0), it is possible to 
c~nstruct both the solution with the phase-transition surface and, under certain conditions for permeability 
of the porous medium, the solution that contains the volumetric-expansion zone. 

Using a self-similar substitution ~ = x / V / ' a ~  [a (T) = A/pc], we reduce system (1.1)-(1.8) to the 
system of ordinary differential equations: 

~d d(K:~ . dP z,)3), 
2 d~ [(9~, - 9~)(1 - u)l = ~ ~- (1 - 

dO d P d O  d 2 0  d P  d .  

P = P-- 0 = T / kg0p0S~ o p,o 
,o' P'~ 

(2.1) 
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The equations are derived from (2.1) for v = 1 in the region where the porous medium is completely 
filled with a solid hydrate and for v = 0 in the region where the porous medium is saturated by the 
decomposition products of the hydrate. Here on the surface of the water-saturated jump, according to (1.6), 
the boundary conditions take, in self-similar coordinates, the form 

whereas P = Pc, O = Oc ({ = 0) at the boundary of the porous medium and O = I ({ = co) at infinity. 
The system was integrated for the following values of the parameters of the hydrate-porous medium system: 
m = 0 . t ,  To = 283 K, p~0 = 5.08 MPa,  T,  = 10 K,  p ,  = 2 . 6 . 1 0  -s  Pa, p0 = 2-  103 kg/m 3, po = 
0.9-103 kg/m 3, d = 10a kg/m3, Pg = 1.8.10 -s Pa- sec, ,~ = 2 kg. m/(sec 3- K), ~h = 2.11 kg. m/(sec 3- K), 
Az = 0.58 kg. m/(sec 3- K), A, = 3-10 -2 kg-m/(sec 3. K), c, = 1000 J/(kg. K), cA = 2500 J/(kg.  K), cl = 
4200 J/(kg �9 K), l = 5- 105 J/kg. 

Figure 38 shows a solution that corresponds to the simultaneously occurring heating and depression 
(Te > To, pe < p,0); curves 1-3 refer to the permeability of the skeleton kg0 = 10 -]3, 10 -16, and 10 -17 m 2. 
Two types of solutions are possible, depending on the magnitude of k~0. The first case (curve 3) occurs 
for sufficiently low permeability, and here the temperature on the phase-transition surface is higher than 
the initial temperature of the hydrate (it is worth noting that in the case of heating with a simultaneous 
increase in the pressure at the boundary of the porous medium, the solution will be qualitatively the same). 
The second case occurs for sufficiently high permeability (curve 1) and differs from the first in that the 
temperature at the phase-transition surface is lower than the initial temperature of the system. In this case, 
hydrate decomposition occurs also owing to heat influx from the system being in the zone in front of the 
phase-transition surface in heated state. The two types of solutions are separated by an intermediate solution 
(curve 2) according to which the temperature in the solid-hydrate zone is constant. The dot-and-dashed curves 
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in this and subsequent figures correspond to the equilibrium pressure ps(T) in the zone filled with the solid 
hydrate, and circles to the position of the phase-transition front. 

Of interest is the situation shown in Fig. 3b, where the temperature at the boundary is lower than the 
initial temperature To (Te < To and p, < ps0). In this case, two types of solutions are possible as well. Curve 1 
with a temperature "pit" near the boundary of the porous medium corresponds to a first-type solution. Such 
solutions are realized for sufficiently high permeability of a porous medium and are characterized by that the 
heat is supplied from the boundary to the phase-transition surface, although the temperature at the boundary 
of the porous medium is lower than the initial temperature. This is caused by the fact that in decomposing 
the hydrate, the temperature on the surface of the phase transitions decreases even more owing to depression 
(pc < ps0) and becomes lower than that of the boundary of the porous medium. The decomposition in this case 
is caused by heat influx both from the zone of the initial solid hydrate and from the boundary. For second-type 
solutions (curve 3), which are obtained for low permeability, the depression-induced "hydrate superheating" is 
sufficient not only for hydrate decomposition, but also for heat effiux from the porous medium to its boundary 
(by "superheating," we mean a positive difference between the initial temperature and the temperature at 
the hydrate-decomposition front). For the intermediate solution (curve 2), the heat flux at the boundary is 
equal to zero. In this case, decomposition occurs owing to the heat released by the "superheated" hydrate. 

3. For the system of equations considered, one can construct a solution that contains the third 
(intermediate) three-phase volumetric region, where the hydrate and the decomposition products coexist 

simultaneously. In the general case, it is necessary to introduce two phase-transition surfaces: the surface t(v) ~(s) 
between the three-phase zone, where the solid hydrate and a gas-liquid mixture are present, and the zone of 

hydrate and the surface ~ between the zone where there are only the decomposition products and a pure 
the three-phase zone. 

The system of equations in this case coincides with (2.1), and the phase-equilibrium condition for a 

hydrate (1.4) being added in the region ,(~)t(T) < ~ < ~(a)'(v) We write the boundary conditions in the form 

e(V) and for ~ = ~.(.) 

(3.1) 

_ . ~ ( T )  ~ ( T )  

_ ~ ( T ) .  for ~ - -  , ( , )  
If the maximum value of the coefficient of gas permeability k0, which is reached for v = 0, is rather 

large and it is also subject to the condition a(V)/a(T) > 2, system (2.1) admits a set of solutions that contains 
the intermediate three-phase region for given temperature and pressure values at the boundary of a porous 
medium. This set of solutions "extends" from the solution with one phase-transition surface [~(s) = ~I,~ ) = 

~((~]],_. when the saturation with water at the boundary varies from the initial value v + = 1 to v-  = 0, to the 

limiting solution, when the saturation with water varies from v + - 1 to v -  - urn ( v m  > 0) at the frontal 

boundary [~ (P) = ~(s)]" In other words, one can construct a solution for any value of saturation with water v-  
from the side of the three-phase zone on the surface between this zone and the pure-hydrate zone (v -- 1), 
which is subject to the condition 0 ~< v -  ~< vm. We note that the limiting saturation with water vm depends 
on the maximum value of the permeability coefficient k~(v). For u-  > urn, there is no solution entering into the 
indicated set, and this, in turn, means, that, in the case u-  > Urn, in the three-phase region the pressure field, 
which, according to (1.4), is uniquely determined by the temperature field, is not capable of transporting the 
products of hydrate decomposition (the gas in this case) through a porous medium. We note that the principle 
of selection of a unique solution is generally unknown and calls for further analysis. The set of solutions can 
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be narrowed if, for example, one assumes that  in the %ffective'-porosity formation zone (when the saturation 
with water is close to unity), the gas is a system of uncombined or weakly combined microvolumes. Here 
gas filtration begins when the saturation with water becomes lower than some critical value t/ = t/*. The 
corresponding value of the %ffective" porosity is larger than rnt. (the dashed curve in Fig. 2). If this critical 
saturation with water t/* is smaller than the limiting value t/m, the range 0-t/* is the domain of values for t/-. 

Figure 4a shows solutions for ku0 - 10 -13 m 2 that  correspond to various values of the saturation with 
water t/-. The limiting value of the saturation with water is t/,n = 0.96. Curves 1-3 correspond to various 
water-saturated jumps at the boundary of partial decomposition, and curve 4 to the solution without account 
for the thermal conduction obtained in [4]. 

Another possibility of the choice of an additional condition consists in analysis of the boundary 
conditions (3.1) and (3.2); with allowance for the solution of Eq. (2.1) in the solid-hydrate zone, neglecting 
~0 in comparison with : ~ . ,  one obtains 

a(r) ta(T)~ /, t ~(r)~ (3.3) - = + , 

With a fixed self-similar coordinate ~!P!, relation (3.3) relates the temperature at the boundary of 
partial phase transitions to the saturation with water at this boundary. It is noteworthy that ,  for some 
value of t/- = t/m, the quantity 1 - A(P) has a minimum, so that  a(P)/a (T) = 2. Clearly, the left branch "( , )  

of the dependence of 1 - el~ I on 1 - v -  has no physical meaning, because here to the larger temperature 
drop between the initial temperature of the system and the temperature on the surface of a partial phase 
transition corresponds the smaller saturation-with-water drop (i.e., the more intense heat flux ensures a weaker 
phase transition). Thus, there is a maximum value of the saturation with water urn, for which solutions with 
volumetric decomposition of the hydrate are still possible. In other words, we always should have a(P)/a(T) > 2 
(u < urn) in the three-phase zone. For a low-permeability porous medium, when a(P)/a (T) < 2, it is impossible 
to construct a solution with the volume decomposition zone for all t/. In this case, there is a unique solution, 
according to which the decomposition will occur on the phase-transition surface. 
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Figure 4b shows a parameter distribution for limiting solutions (when v-  = v,,) for kg0 = 10 -14, 
4-10 -14, and 10 -13 m 2 (curves 1-3). It is seen that as the permeability deteriorates, the hydrate-decomposition 
zone narrows, becoming, in the limit, the surface of phase transitions. 

This work was partially supported by the Russian government (Grant No. 96-15-96001). 
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